Developer Documentation

Healix AI Platform

Build intelligent healthcare applications with our AI-powered APIs and SDKs

Platform Overview

The Healix AI Platform provides a suite of healthcare-specific AI models and APIs that enable developers to build intelligent applications that can analyze health data, generate insights, and provide personalized recommendations.

Healthcare-Specific Models

Pre-trained on millions of healthcare records and medical literature to understand medical context and terminology.

Unified Data Processing

Process and analyze data from wearables, EHRs, and lab systems with a single API.

Actionable Insights

Generate evidence-based insights and recommendations from health data.

Key Capabilities

Natural Language Understanding

Process and understand medical text, clinical notes, and patient communications

Time-Series Analysis

Analyze temporal health data to identify patterns and trends

Multimodal Integration

Combine insights from text, numerical data, and medical imaging

Predictive Analytics

Forecast health outcomes and identify risk factors

Personalized Recommendations

Generate tailored health advice based on individual data

HIPAA-Compliant Processing

Secure, compliant handling of protected health information

Getting Started

Follow these steps to start building with the Healix AI Platform.

1

Create an API Key

Sign up for a Healix developer account and create an API key to authenticate your requests.

Create API Key
Developer Dashboard
API Key
hlx_sk_••••••••••••••••••••••••••••
Created on March 15, 2024 · Never expires
2

Install the SDK

Choose your preferred language and install our SDK using your package manager.

npm install @healix/ai-sdk
3

Initialize the Client

Create a new Healix AI client instance with your API key.

import { HealixAI } from '@healix/ai-sdk';

const ai = new HealixAI({
  apiKey: 'YOUR_API_KEY',
  environment: 'production' // or 'sandbox' for testing
});
4

Make Your First API Call

Start using the Healix AI Platform by making a simple API call to analyze health data.

// Analyze health data and generate insights
const response = await ai.analyze({
  data: {
    sleepData: [
      { date: '2023-03-01', duration: 7.5, quality: 0.85 },
      { date: '2023-03-02', duration: 6.8, quality: 0.75 },
      // More data points...
    ],
    activityData: [
      { date: '2023-03-01', steps: 8500, activeMinutes: 35 },
      { date: '2023-03-02', steps: 7200, activeMinutes: 28 },
      // More data points...
    ]
  },
  options: {
    analysisType: 'comprehensive',
    timeframe: '30d'
  }
});

console.log('Analysis results:', response.insights);
console.log('Recommendations:', response.recommendations);

API Reference

The Healix AI Platform offers a comprehensive set of APIs for healthcare data analysis and AI-powered insights.

Health Data Analysis API

POST
/v1/analyze

Analyze health data to identify patterns, trends, and generate actionable insights.

Request Parameters

{
  "data": {
    "sleepData": [
      { "date": "YYYY-MM-DD", "duration": number, "quality": number },
      ...
    ],
    "activityData": [
      { "date": "YYYY-MM-DD", "steps": number, "activeMinutes": number },
      ...
    ],
    "vitalData": [
      { "date": "YYYY-MM-DD", "heartRate": number, "bloodPressure": { "systolic": number, "diastolic": number } },
      ...
    ]
  },
  "options": {
    "analysisType": "basic" | "comprehensive" | "focused",
    "timeframe": "7d" | "30d" | "90d" | "custom",
    "customTimeframe": { "start": "YYYY-MM-DD", "end": "YYYY-MM-DD" },
    "focusAreas": ["sleep", "activity", "nutrition", "stress"]
  }
}

Response

{
  "id": "analysis_123456",
  "timestamp": "2023-03-15T14:32:10Z",
  "insights": [
    {
      "type": "pattern",
      "category": "sleep",
      "description": "Sleep duration has decreased by 12% over the past two weeks",
      "confidence": 0.92,
      "evidence": [
        { "date": "2023-03-01", "value": 7.5 },
        { "date": "2023-03-14", "value": 6.6 }
      ]
    },
    ...
  ],
  "recommendations": [
    {
      "category": "sleep",
      "priority": "high",
      "description": "Establish a consistent sleep schedule, aiming for 7.5-8 hours per night",
      "rationale": "Based on your historical optimal sleep duration and current sleep deficit"
    },
    ...
  ],
  "summary": "Text summary of the analysis results and key findings"
}

Example

import { HealixAI } from '@healix/ai-sdk';

const ai = new HealixAI({
  apiKey: 'YOUR_API_KEY'
});

async function analyzeHealthData() {
  const response = await ai.analyze({
    data: {
      sleepData: [
        { date: '2023-03-01', duration: 7.5, quality: 0.85 },
        { date: '2023-03-02', duration: 6.8, quality: 0.75 },
        // More data points...
      ],
      activityData: [
        { date: '2023-03-01', steps: 8500, activeMinutes: 35 },
        { date: '2023-03-02', steps: 7200, activeMinutes: 28 },
        // More data points...
      ]
    },
    options: {
      analysisType: 'comprehensive',
      timeframe: '30d'
    }
  });

  console.log('Analysis results:', response.insights);
  console.log('Recommendations:', response.recommendations);
}

analyzeHealthData();

Predictive Analytics API

POST
/v1/predict

Generate predictions and risk assessments based on health data.

Request Parameters

{
  "patientData": {
    "demographics": {
      "age": number,
      "sex": "male" | "female" | "other",
      "height": number,
      "weight": number
    },
    "medicalHistory": {
      "conditions": ["condition1", "condition2", ...],
      "medications": ["medication1", "medication2", ...],
      "allergies": ["allergy1", "allergy2", ...]
    },
    "vitalTrends": [
      { "date": "YYYY-MM-DD", "heartRate": number, "bloodPressure": { "systolic": number, "diastolic": number } },
      ...
    ],
    "labResults": [
      { "date": "YYYY-MM-DD", "test": "testName", "value": number, "unit": "unit", "referenceRange": { "low": number, "high": number } },
      ...
    ]
  },
  "predictionType": "riskAssessment" | "outcomeForecasting" | "readmissionRisk",
  "targetCondition": "string",
  "timeHorizon": "30d" | "90d" | "180d" | "1y" | "5y",
  "options": {
    "includeExplanations": boolean,
    "confidenceIntervals": boolean
  }
}

Response

{
  "id": "prediction_123456",
  "timestamp": "2023-03-15T14:32:10Z",
  "predictionType": "riskAssessment",
  "targetCondition": "type2Diabetes",
  "prediction": {
    "riskScore": 0.35,
    "riskCategory": "moderate",
    "confidenceInterval": {
      "lower": 0.28,
      "upper": 0.42
    }
  },
  "contributingFactors": [
    {
      "factor": "BMI",
      "impact": "high",
      "direction": "increasing",
      "value": 29.5,
      "referenceRange": {
        "low": 18.5,
        "high": 24.9
      }
    },
    ...
  ],
  "recommendations": [
    {
      "category": "lifestyle",
      "description": "Increase physical activity to at least 150 minutes of moderate exercise per week",
      "expectedImpact": "Could reduce risk score by approximately 0.05-0.08"
    },
    ...
  ],
  "explanation": "Detailed explanation of the prediction methodology and key factors"
}

Example

import { HealixAI } from '@healix/ai-sdk';

const ai = new HealixAI({
  apiKey: 'YOUR_API_KEY'
});

async function predictDiabetesRisk() {
  const response = await ai.predict({
    patientData: {
      demographics: {
        age: 45,
        sex: 'male',
        height: 175,
        weight: 90
      },
      medicalHistory: {
        conditions: ['hypertension', 'hyperlipidemia'],
        medications: ['lisinopril', 'atorvastatin'],
        allergies: ['penicillin']
      },
      vitalTrends: [
        { 
          date: '2023-02-15', 
          heartRate: 72, 
          bloodPressure: { systolic: 138, diastolic: 88 } 
        },
        // More data points...
      ],
      labResults: [
        { 
          date: '2023-02-15', 
          test: 'fastingGlucose', 
          value: 110, 
          unit: 'mg/dL', 
          referenceRange: { low: 70, high: 99 } 
        },
        // More lab results...
      ]
    },
    predictionType: 'riskAssessment',
    targetCondition: 'type2Diabetes',
    timeHorizon: '5y',
    options: {
      includeExplanations: true,
      confidenceIntervals: true
    }
  });

  console.log('Risk assessment:', response.prediction);
  console.log('Contributing factors:', response.contributingFactors);
  console.log('Recommendations:', response.recommendations);
}

predictDiabetesRisk();

Use Cases

Discover how the Healix AI Platform can be used to build innovative healthcare applications.

Remote Patient Monitoring

Build intelligent remote monitoring applications that analyze patient data in real-time, identify concerning trends, and generate personalized recommendations.

  • Continuous analysis of wearable device data
  • Early detection of health deterioration
  • Personalized recommendations based on individual health patterns
  • Automated alerts for healthcare providers
Remote Patient Monitoring

Clinical Decision Support

Enhance clinical decision-making with AI-powered insights that help healthcare providers identify risks, optimize treatment plans, and improve patient outcomes.

  • Risk stratification for patient populations
  • Treatment response prediction
  • Medication optimization recommendations
  • Evidence-based clinical insights
Clinical Decision Support

Personalized Health Coaching

Create engaging health coaching applications that provide personalized guidance, track progress, and adapt recommendations based on individual health data.

  • Personalized goal setting based on health data
  • Adaptive exercise and nutrition recommendations
  • Progress tracking and motivation
  • Behavioral insights and habit formation support
Personalized Health Coaching

Population Health Management

Develop population health solutions that identify trends, stratify risk, and enable targeted interventions for specific patient groups.

  • Population-level health trend analysis
  • Risk stratification and cohort identification
  • Resource allocation optimization
  • Intervention effectiveness measurement
Population Health Management

Code Examples

Explore practical examples of how to use the Healix AI Platform in your applications.

Sleep Pattern Analysis

This example demonstrates how to analyze sleep data to identify patterns and generate recommendations.

import { HealixAI } from '@healix/ai-sdk';

const ai = new HealixAI({
  apiKey: 'YOUR_API_KEY'
});

async function analyzeSleepPatterns() {
  // Sample sleep data for the past 30 days
  const sleepData = [
    { date: '2023-03-01', duration: 7.5, quality: 0.85, deepSleepPercentage: 0.25, remSleepPercentage: 0.20 },
    { date: '2023-03-02', duration: 6.8, quality: 0.75, deepSleepPercentage: 0.22, remSleepPercentage: 0.18 },
    // ... more data points
  ];

  // Analyze sleep patterns
  const response = await ai.analyze({
    data: {
      sleepData: sleepData
    },
    options: {
      analysisType: 'focused',
      timeframe: '30d',
      focusAreas: ['sleep']
    }
  });

  // Extract insights and recommendations
  const sleepInsights = response.insights.filter(insight => insight.category === 'sleep');
  const sleepRecommendations = response.recommendations.filter(rec => rec.category === 'sleep');

  // Display results
  console.log('Sleep Pattern Analysis Results:');
  console.log('\nInsights:');
  sleepInsights.forEach(insight => {
    console.log(`- ${insight.description} (Confidence: ${insight.confidence})`);
  });

  console.log('\nRecommendations:');
  sleepRecommendations.forEach(rec => {
    console.log(`- ${rec.description}`);
    console.log(`  Rationale: ${rec.rationale}`);
  });

  // Generate a sleep quality trend visualization
  const sleepQualityTrend = await ai.visualize({
    data: sleepData,
    visualizationType: 'trend',
    metric: 'quality',
    title: 'Sleep Quality Trend',
    timeframe: '30d'
  });

  return {
    insights: sleepInsights,
    recommendations: sleepRecommendations,
    visualization: sleepQualityTrend
  };
}

// Call the function
analyzeSleepPatterns()
  .then(results => console.log('Analysis complete!'))
  .catch(error => console.error('Error analyzing sleep patterns:', error));

Diabetes Risk Assessment

This example shows how to use the predictive analytics API to assess a patient's risk of developing type 2 diabetes.

import { HealixAI } from '@healix/ai-sdk';

const ai = new HealixAI({
  apiKey: 'YOUR_API_KEY'
});

async function assessDiabetesRisk(patientId) {
  // Fetch patient data from your system
  const patientData = await fetchPatientData(patientId);
  
  // Prepare the prediction request
  const response = await ai.predict({
    patientData: {
      demographics: {
        age: patientData.age,
        sex: patientData.sex,
        height: patientData.height,
        weight: patientData.weight
      },
      medicalHistory: {
        conditions: patientData.conditions,
        medications: patientData.medications,
        allergies: patientData.allergies,
        familyHistory: patientData.familyHistory
      },
      vitalTrends: patientData.vitals,
      labResults: patientData.labResults
    },
    predictionType: 'riskAssessment',
    targetCondition: 'type2Diabetes',
    timeHorizon: '5y',
    options: {
      includeExplanations: true,
      confidenceIntervals: true
    }
  });
  
  // Process the results
  const riskScore = response.prediction.riskScore;
  const riskCategory = response.prediction.riskCategory;
  const confidenceInterval = response.prediction.confidenceInterval;
  
  console.log(`Diabetes Risk Assessment for Patient ${patientId}:`);
  console.log(`Risk Score: ${riskScore} (Category: ${riskCategory})`);
  console.log(`Confidence Interval: ${confidenceInterval.lower} - ${confidenceInterval.upper}`);
  
  console.log('\nContributing Factors:');
  response.contributingFactors.forEach(factor => {
    console.log(`- ${factor.factor}: ${factor.value} (${factor.impact} impact, ${factor.direction} risk)`);
  });
  
  console.log('\nRecommendations:');
  response.recommendations.forEach(rec => {
    console.log(`- ${rec.description}`);
    console.log(`  Expected Impact: ${rec.expectedImpact}`);
  });
  
  // Generate a risk visualization
  const riskVisualization = await ai.visualize({
    data: response,
    visualizationType: 'riskAssessment',
    title: 'Type 2 Diabetes Risk Factors',
    patientId: patientId
  });
  
  return {
    riskAssessment: response,
    visualization: riskVisualization
  };
}

// Mock function to fetch patient data
async function fetchPatientData(patientId) {
  // In a real application, this would fetch data from your database
  return {
    age: 45,
    sex: 'male',
    height: 175,
    weight: 90,
    conditions: ['hypertension', 'hyperlipidemia'],
    medications: ['lisinopril', 'atorvastatin'],
    allergies: ['penicillin'],
    familyHistory: ['diabetes', 'coronary artery disease'],
    vitals: [
      { 
        date: '2023-02-15', 
        heartRate: 72, 
        bloodPressure: { systolic: 138, diastolic: 88 } 
      },
      // More vitals data...
    ],
    labResults: [
      { 
        date: '2023-02-15', 
        test: 'fastingGlucose', 
        value: 110, 
        unit: 'mg/dL', 
        referenceRange: { low: 70, high: 99 } 
      },
      { 
        date: '2023-02-15', 
        test: 'hba1c', 
        value: 5.9, 
        unit: '%', 
        referenceRange: { low: 4.0, high: 5.6 } 
      },
      // More lab results...
    ]
  };
}

// Call the function with a patient ID
assessDiabetesRisk('patient_12345')
  .then(results => console.log('Assessment complete!'))
  .catch(error => console.error('Error assessing diabetes risk:', error));

Building a Health Coaching Application

This example demonstrates how to integrate the Healix AI Platform into a health coaching application.

// HealthCoachApp.jsx
import React, { useState, useEffect } from 'react';
import { HealixAI } from '@healix/ai-sdk';
import { HealthDataChart } from './components/HealthDataChart';
import { RecommendationCard } from './components/RecommendationCard';
import { ProgressTracker } from './components/ProgressTracker';
import { GoalSetting } from './components/GoalSetting';

// Initialize the Healix AI client
const ai = new HealixAI({
  apiKey: process.env.REACT_APP_HEALIX_API_KEY
});

function HealthCoachApp({ userId }) {
  const [loading, setLoading] = useState(true);
  const [userData, setUserData] = useState(null);
  const [insights, setInsights] = useState([]);
  const [recommendations, setRecommendations] = useState([]);
  const [goals, setGoals] = useState([]);
  const [error, setError] = useState(null);

  // Fetch user data and generate insights
  useEffect(() => {
    async function fetchUserDataAndInsights() {
      try {
        setLoading(true);
        
        // Fetch user data from your backend
        const userData = await fetchUserData(userId);
        setUserData(userData);
        
        // Generate insights using Healix AI
        const analysisResponse = await ai.analyze({
          data: {
            sleepData: userData.sleepData,
            activityData: userData.activityData,
            nutritionData: userData.nutritionData,
            vitalData: userData.vitalData
          },
          options: {
            analysisType: 'comprehensive',
            timeframe: '30d'
          }
        });
        
        setInsights(analysisResponse.insights);
        setRecommendations(analysisResponse.recommendations);
        
        // Fetch user goals
        const userGoals = await fetchUserGoals(userId);
        setGoals(userGoals);
        
      } catch (err) {
        console.error('Error fetching data:', err);
        setError('Failed to load your health data. Please try again later.');
      } finally {
        setLoading(false);
      }
    }
    
    fetchUserDataAndInsights();
  }, [userId]);

  // Handle setting a new goal
  const handleSetGoal = async (goalData) => {
    try {
      // Use AI to validate and refine the goal
      const refinedGoal = await ai.refineGoal({
        userId,
        proposedGoal: goalData,
        userData: {
          currentMetrics: userData.latestMetrics,
          healthHistory: userData.healthHistory
        }
      });
      
      // Save the goal to your backend
      await saveUserGoal(userId, refinedGoal);
      
      // Update local state
      setGoals(prevGoals => [...prevGoals, refinedGoal]);
      
      return { success: true, goal: refinedGoal };
    } catch (err) {
      console.error('Error setting goal:', err);
      return { success: false, error: err.message };
    }
  };

  // Generate a personalized workout plan
  const generateWorkoutPlan = async () => {
    try {
      const workoutPlan = await ai.generatePlan({
        userId,
        planType: 'workout',
        userData: {
          fitnessLevel: userData.fitnessLevel,
          preferences: userData.preferences,
          restrictions: userData.restrictions
        },
        goals: goals.filter(g => g.category === 'fitness')
      });
      
      return workoutPlan;
    } catch (err) {
      console.error('Error generating workout plan:', err);
      return null;
    }
  };

  if (loading) {
    return <div className="loading-spinner">Loading your health data...</div>;
  }

  if (error) {
    return <div className="error-message">{error}</div>;
  }

  return (
    <div className="health-coach-app">
      <header className="app-header">
        <h1>Your Health Coach</h1>
        <p>Personalized insights and recommendations based on your health data</p>
      </header>
      
      <section className="health-overview">
        <h2>Health Overview</h2>
        <div className="metrics-grid">
          {userData.latestMetrics.map(metric => (
            <div key={metric.id} className="metric-card">
              <h3>{metric.name}</h3>
              <div className="metric-value">{metric.value} {metric.unit}</div>
              <div className="metric-trend">
                {metric.trend === 'up' ? '↑' : metric.trend === 'down' ? '↓' : '→'}
                {metric.trendValue}% in the last 7 days
              </div>
            </div>
          ))}
        </div>
      </section>
      
      <section className="data-visualization">
        <h2>Your Health Trends</h2>
        <div className="charts-container">
          <HealthDataChart 
            data={userData.sleepData} 
            type="sleep" 
            timeframe="30d" 
          />
          <HealthDataChart 
            data={userData.activityData} 
            type="activity" 
            timeframe="30d" 
          />
        </div>
      </section>
      
      <section className="ai-insights">
        <h2>AI-Powered Insights</h2>
        <div className="insights-list">
          {insights.map(insight => (
            <div key={insight.id} className="insight-card">
              <div className="insight-category">{insight.category}</div>
              <p className="insight-description">{insight.description}</p>
              <div className="insight-confidence">
                Confidence: {(insight.confidence * 100).toFixed(0)}%
              </div>
            </div>
          ))}
        </div>
      </section>
      
      <section className="recommendations">
        <h2>Personalized Recommendations</h2>
        <div className="recommendations-list">
          {recommendations.map(rec => (
            <RecommendationCard 
              key={rec.id}
              recommendation={rec}
              onAccept={() => markRecommendationAsAccepted(rec.id)}
              onDismiss={() => markRecommendationAsDismissed(rec.id)}
            />
          ))}
        </div>
      </section>
      
      <section className="goal-tracking">
        <h2>Your Health Goals</h2>
        <GoalSetting onSetGoal={handleSetGoal} />
        <ProgressTracker goals={goals} />
      </section>
      
      <section className="action-buttons">
        <button 
          className="primary-button"
          onClick={generateWorkoutPlan}
        >
          Generate Workout Plan
        </button>
        <button className="secondary-button">
          Schedule Health Coaching Session
        </button>
      </section>
    </div>
  );
}

// Mock functions for data fetching - replace with your actual API calls
async function fetchUserData(userId) {
  // In a real app, this would call your backend API
  return {
    sleepData: [],
    activityData: [],
    nutritionData: [],
    vitalData: [],
    latestMetrics: [
      { id: 1, name: 'Sleep Score', value: 85, unit: '/100', trend: 'up', trendValue: 5 },
      { id: 2, name: 'Resting Heart Rate', value: 62, unit: 'bpm', trend: 'down', trendValue: 3 },
      { id: 3, name: 'Daily Steps', value: 8750, unit: '', trend: 'up', trendValue: 12 },
      { id: 4, name: 'Active Minutes', value: 42, unit: 'min', trend: 'up', trendValue: 8 }
    ],
    fitnessLevel: 'intermediate',
    preferences: ['running', 'yoga', 'cycling'],
    restrictions: ['knee pain'],
    healthHistory: {}
  };
}

async function fetchUserGoals(userId) {
  // In a real app, this would call your backend API
  return [
    { id: 1, category: 'fitness', description: 'Run a 5K in under 30 minutes', deadline: '2023-06-30', progress: 0.65 },
    { id: 2, category: 'sleep', description: 'Average 7.5 hours of sleep per night', deadline: '2023-04-30', progress: 0.8 }
  ];
}

async function saveUserGoal(userId, goal) {
  // In a real app, this would call your backend API
  console.log('Saving goal for user', userId, goal);
  return { success: true };
}

async function markRecommendationAsAccepted(recId) {
  // In a real app, this would call your backend API
  console.log('Marking recommendation as accepted', recId);
  return { success: true };
}

async function markRecommendationAsDismissed(recId) {
  // In a real app, this would call your backend API
  console.log('Marking recommendation as dismissed', recId);
  return { success: true };
}

export default HealthCoachApp;

Custom Model Training

While our pre-trained models cover a wide range of healthcare use cases, you can also train custom models on your specific data to achieve even higher accuracy and domain-specific insights.

Fine-Tuning Process

Our platform allows you to fine-tune our base models on your proprietary data, creating custom models that understand your specific healthcare context.

01

Data Preparation

Prepare and format your training data according to our guidelines, ensuring it's properly anonymized and structured.

02

Model Selection

Choose the base model that best fits your use case from our range of healthcare-specific foundation models.

03

Training Configuration

Configure training parameters, including learning rate, epochs, and validation split.

04

Training & Evaluation

Our platform handles the training process and provides detailed evaluation metrics to assess model performance.

05

Deployment

Deploy your custom model to production with a single click, making it available through our API.

Benefits of Custom Models

  • Higher Accuracy

    Custom models can achieve 15-30% higher accuracy on domain-specific tasks compared to general models.

  • Specialized Terminology

    Models learn your organization's specific medical terminology, abbreviations, and documentation patterns.

  • Unique Insights

    Discover patterns and insights specific to your patient population or clinical practice.

  • Competitive Advantage

    Create unique AI capabilities that differentiate your healthcare application in the market.

Custom Model Training API

POST
/v1/models/train

Start a custom model training job with your data.

Example

import { HealixAI } from '@healix/ai-sdk';

const ai = new HealixAI({
  apiKey: 'YOUR_API_KEY'
});

async function trainCustomModel() {
  // Start a training job
  const trainingJob = await ai.models.train({
    baseModel: 'healix-health-analyzer-v2',
    trainingData: {
      datasetId: 'dataset_12345',  // ID of a previously uploaded dataset
      datasetFormat: 'jsonl'
    },
    hyperparameters: {
      learningRate: 2e-5,
      epochs: 3,
      batchSize: 16,
      validationSplit: 0.1
    },
    modelName: 'custom-health-analyzer-cardiology',
    description: 'Specialized model for cardiology data analysis'
  });
  
  console.log(`Training job started: ${trainingJob.id}`);
  console.log(`Status: ${trainingJob.status}`);
  console.log(`Estimated completion time: ${trainingJob.estimatedCompletionTime}`);
  
  // Poll for training status
  let status = trainingJob.status;
  while (status === 'in_progress') {
    await new Promise(resolve => setTimeout(resolve, 60000)); // Wait 1 minute
    
    const updatedJob = await ai.models.getTrainingJob(trainingJob.id);
    status = updatedJob.status;
    
    console.log(`Current status: ${status}`);
    if (updatedJob.metrics) {
      console.log('Current metrics:', updatedJob.metrics);
    }
  }
  
  if (status === 'completed') {
    console.log('Training completed successfully!');
    console.log(`Model ID: ${trainingJob.modelId}`);
    console.log('Final metrics:', trainingJob.metrics);
    
    // Deploy the model
    const deployment = await ai.models.deploy({
      modelId: trainingJob.modelId,
      deploymentName: 'production',
      scalingConfig: {
        minInstances: 1,
        maxInstances: 5
      }
    });
    
    console.log(`Model deployed: ${deployment.endpoint}`);
    return deployment;
  } else {
    console.error(`Training failed: ${trainingJob.error}`);
    return null;
  }
}

trainCustomModel()
  .then(deployment => {
    if (deployment) {
      console.log('Custom model training and deployment complete!');
    }
  })
  .catch(error => console.error('Error in model training process:', error));

Ready to Build with Healix AI?

Join leading healthcare organizations using Healix AI to build innovative applications that transform healthcare.

100+
Healthcare Models
99.9%
API Uptime
500+
Developer Teams
HIPAA
Compliant