Healix AI Platform
Build intelligent healthcare applications with our AI-powered APIs and SDKs
Platform Overview
The Healix AI Platform provides a suite of healthcare-specific AI models and APIs that enable developers to build intelligent applications that can analyze health data, generate insights, and provide personalized recommendations.
Healthcare-Specific Models
Pre-trained on millions of healthcare records and medical literature to understand medical context and terminology.
Unified Data Processing
Process and analyze data from wearables, EHRs, and lab systems with a single API.
Actionable Insights
Generate evidence-based insights and recommendations from health data.
Key Capabilities
Natural Language Understanding
Process and understand medical text, clinical notes, and patient communications
Time-Series Analysis
Analyze temporal health data to identify patterns and trends
Multimodal Integration
Combine insights from text, numerical data, and medical imaging
Predictive Analytics
Forecast health outcomes and identify risk factors
Personalized Recommendations
Generate tailored health advice based on individual data
HIPAA-Compliant Processing
Secure, compliant handling of protected health information
Getting Started
Follow these steps to start building with the Healix AI Platform.
Create an API Key
Sign up for a Healix developer account and create an API key to authenticate your requests.
Create API KeyInstall the SDK
Choose your preferred language and install our SDK using your package manager.
npm install @healix/ai-sdkInitialize the Client
Create a new Healix AI client instance with your API key.
import { HealixAI } from '@healix/ai-sdk';
const ai = new HealixAI({
apiKey: 'YOUR_API_KEY',
environment: 'production' // or 'sandbox' for testing
});Make Your First API Call
Start using the Healix AI Platform by making a simple API call to analyze health data.
// Analyze health data and generate insights
const response = await ai.analyze({
data: {
sleepData: [
{ date: '2023-03-01', duration: 7.5, quality: 0.85 },
{ date: '2023-03-02', duration: 6.8, quality: 0.75 },
// More data points...
],
activityData: [
{ date: '2023-03-01', steps: 8500, activeMinutes: 35 },
{ date: '2023-03-02', steps: 7200, activeMinutes: 28 },
// More data points...
]
},
options: {
analysisType: 'comprehensive',
timeframe: '30d'
}
});
console.log('Analysis results:', response.insights);
console.log('Recommendations:', response.recommendations);API Reference
The Healix AI Platform offers a comprehensive set of APIs for healthcare data analysis and AI-powered insights.
Health Data Analysis
Analyze health data from wearables, EHRs, and lab systems to identify patterns and generate insights.
/v1/analyzePredictive Analytics
Forecast health outcomes and identify risk factors based on historical data.
/v1/predictHealth Data Analysis API
/v1/analyzeAnalyze health data to identify patterns, trends, and generate actionable insights.
Request Parameters
{
"data": {
"sleepData": [
{ "date": "YYYY-MM-DD", "duration": number, "quality": number },
...
],
"activityData": [
{ "date": "YYYY-MM-DD", "steps": number, "activeMinutes": number },
...
],
"vitalData": [
{ "date": "YYYY-MM-DD", "heartRate": number, "bloodPressure": { "systolic": number, "diastolic": number } },
...
]
},
"options": {
"analysisType": "basic" | "comprehensive" | "focused",
"timeframe": "7d" | "30d" | "90d" | "custom",
"customTimeframe": { "start": "YYYY-MM-DD", "end": "YYYY-MM-DD" },
"focusAreas": ["sleep", "activity", "nutrition", "stress"]
}
}Response
{
"id": "analysis_123456",
"timestamp": "2023-03-15T14:32:10Z",
"insights": [
{
"type": "pattern",
"category": "sleep",
"description": "Sleep duration has decreased by 12% over the past two weeks",
"confidence": 0.92,
"evidence": [
{ "date": "2023-03-01", "value": 7.5 },
{ "date": "2023-03-14", "value": 6.6 }
]
},
...
],
"recommendations": [
{
"category": "sleep",
"priority": "high",
"description": "Establish a consistent sleep schedule, aiming for 7.5-8 hours per night",
"rationale": "Based on your historical optimal sleep duration and current sleep deficit"
},
...
],
"summary": "Text summary of the analysis results and key findings"
}Example
import { HealixAI } from '@healix/ai-sdk';
const ai = new HealixAI({
apiKey: 'YOUR_API_KEY'
});
async function analyzeHealthData() {
const response = await ai.analyze({
data: {
sleepData: [
{ date: '2023-03-01', duration: 7.5, quality: 0.85 },
{ date: '2023-03-02', duration: 6.8, quality: 0.75 },
// More data points...
],
activityData: [
{ date: '2023-03-01', steps: 8500, activeMinutes: 35 },
{ date: '2023-03-02', steps: 7200, activeMinutes: 28 },
// More data points...
]
},
options: {
analysisType: 'comprehensive',
timeframe: '30d'
}
});
console.log('Analysis results:', response.insights);
console.log('Recommendations:', response.recommendations);
}
analyzeHealthData();Predictive Analytics API
/v1/predictGenerate predictions and risk assessments based on health data.
Request Parameters
{
"patientData": {
"demographics": {
"age": number,
"sex": "male" | "female" | "other",
"height": number,
"weight": number
},
"medicalHistory": {
"conditions": ["condition1", "condition2", ...],
"medications": ["medication1", "medication2", ...],
"allergies": ["allergy1", "allergy2", ...]
},
"vitalTrends": [
{ "date": "YYYY-MM-DD", "heartRate": number, "bloodPressure": { "systolic": number, "diastolic": number } },
...
],
"labResults": [
{ "date": "YYYY-MM-DD", "test": "testName", "value": number, "unit": "unit", "referenceRange": { "low": number, "high": number } },
...
]
},
"predictionType": "riskAssessment" | "outcomeForecasting" | "readmissionRisk",
"targetCondition": "string",
"timeHorizon": "30d" | "90d" | "180d" | "1y" | "5y",
"options": {
"includeExplanations": boolean,
"confidenceIntervals": boolean
}
}Response
{
"id": "prediction_123456",
"timestamp": "2023-03-15T14:32:10Z",
"predictionType": "riskAssessment",
"targetCondition": "type2Diabetes",
"prediction": {
"riskScore": 0.35,
"riskCategory": "moderate",
"confidenceInterval": {
"lower": 0.28,
"upper": 0.42
}
},
"contributingFactors": [
{
"factor": "BMI",
"impact": "high",
"direction": "increasing",
"value": 29.5,
"referenceRange": {
"low": 18.5,
"high": 24.9
}
},
...
],
"recommendations": [
{
"category": "lifestyle",
"description": "Increase physical activity to at least 150 minutes of moderate exercise per week",
"expectedImpact": "Could reduce risk score by approximately 0.05-0.08"
},
...
],
"explanation": "Detailed explanation of the prediction methodology and key factors"
}Example
import { HealixAI } from '@healix/ai-sdk';
const ai = new HealixAI({
apiKey: 'YOUR_API_KEY'
});
async function predictDiabetesRisk() {
const response = await ai.predict({
patientData: {
demographics: {
age: 45,
sex: 'male',
height: 175,
weight: 90
},
medicalHistory: {
conditions: ['hypertension', 'hyperlipidemia'],
medications: ['lisinopril', 'atorvastatin'],
allergies: ['penicillin']
},
vitalTrends: [
{
date: '2023-02-15',
heartRate: 72,
bloodPressure: { systolic: 138, diastolic: 88 }
},
// More data points...
],
labResults: [
{
date: '2023-02-15',
test: 'fastingGlucose',
value: 110,
unit: 'mg/dL',
referenceRange: { low: 70, high: 99 }
},
// More lab results...
]
},
predictionType: 'riskAssessment',
targetCondition: 'type2Diabetes',
timeHorizon: '5y',
options: {
includeExplanations: true,
confidenceIntervals: true
}
});
console.log('Risk assessment:', response.prediction);
console.log('Contributing factors:', response.contributingFactors);
console.log('Recommendations:', response.recommendations);
}
predictDiabetesRisk();Use Cases
Discover how the Healix AI Platform can be used to build innovative healthcare applications.
Remote Patient Monitoring
Build intelligent remote monitoring applications that analyze patient data in real-time, identify concerning trends, and generate personalized recommendations.
- Continuous analysis of wearable device data
- Early detection of health deterioration
- Personalized recommendations based on individual health patterns
- Automated alerts for healthcare providers

Clinical Decision Support
Enhance clinical decision-making with AI-powered insights that help healthcare providers identify risks, optimize treatment plans, and improve patient outcomes.
- Risk stratification for patient populations
- Treatment response prediction
- Medication optimization recommendations
- Evidence-based clinical insights
Personalized Health Coaching
Create engaging health coaching applications that provide personalized guidance, track progress, and adapt recommendations based on individual health data.
- Personalized goal setting based on health data
- Adaptive exercise and nutrition recommendations
- Progress tracking and motivation
- Behavioral insights and habit formation support
Population Health Management
Develop population health solutions that identify trends, stratify risk, and enable targeted interventions for specific patient groups.
- Population-level health trend analysis
- Risk stratification and cohort identification
- Resource allocation optimization
- Intervention effectiveness measurement
Code Examples
Explore practical examples of how to use the Healix AI Platform in your applications.
Sleep Pattern Analysis
This example demonstrates how to analyze sleep data to identify patterns and generate recommendations.
import { HealixAI } from '@healix/ai-sdk';
const ai = new HealixAI({
apiKey: 'YOUR_API_KEY'
});
async function analyzeSleepPatterns() {
// Sample sleep data for the past 30 days
const sleepData = [
{ date: '2023-03-01', duration: 7.5, quality: 0.85, deepSleepPercentage: 0.25, remSleepPercentage: 0.20 },
{ date: '2023-03-02', duration: 6.8, quality: 0.75, deepSleepPercentage: 0.22, remSleepPercentage: 0.18 },
// ... more data points
];
// Analyze sleep patterns
const response = await ai.analyze({
data: {
sleepData: sleepData
},
options: {
analysisType: 'focused',
timeframe: '30d',
focusAreas: ['sleep']
}
});
// Extract insights and recommendations
const sleepInsights = response.insights.filter(insight => insight.category === 'sleep');
const sleepRecommendations = response.recommendations.filter(rec => rec.category === 'sleep');
// Display results
console.log('Sleep Pattern Analysis Results:');
console.log('\nInsights:');
sleepInsights.forEach(insight => {
console.log(`- ${insight.description} (Confidence: ${insight.confidence})`);
});
console.log('\nRecommendations:');
sleepRecommendations.forEach(rec => {
console.log(`- ${rec.description}`);
console.log(` Rationale: ${rec.rationale}`);
});
// Generate a sleep quality trend visualization
const sleepQualityTrend = await ai.visualize({
data: sleepData,
visualizationType: 'trend',
metric: 'quality',
title: 'Sleep Quality Trend',
timeframe: '30d'
});
return {
insights: sleepInsights,
recommendations: sleepRecommendations,
visualization: sleepQualityTrend
};
}
// Call the function
analyzeSleepPatterns()
.then(results => console.log('Analysis complete!'))
.catch(error => console.error('Error analyzing sleep patterns:', error));Diabetes Risk Assessment
This example shows how to use the predictive analytics API to assess a patient's risk of developing type 2 diabetes.
import { HealixAI } from '@healix/ai-sdk';
const ai = new HealixAI({
apiKey: 'YOUR_API_KEY'
});
async function assessDiabetesRisk(patientId) {
// Fetch patient data from your system
const patientData = await fetchPatientData(patientId);
// Prepare the prediction request
const response = await ai.predict({
patientData: {
demographics: {
age: patientData.age,
sex: patientData.sex,
height: patientData.height,
weight: patientData.weight
},
medicalHistory: {
conditions: patientData.conditions,
medications: patientData.medications,
allergies: patientData.allergies,
familyHistory: patientData.familyHistory
},
vitalTrends: patientData.vitals,
labResults: patientData.labResults
},
predictionType: 'riskAssessment',
targetCondition: 'type2Diabetes',
timeHorizon: '5y',
options: {
includeExplanations: true,
confidenceIntervals: true
}
});
// Process the results
const riskScore = response.prediction.riskScore;
const riskCategory = response.prediction.riskCategory;
const confidenceInterval = response.prediction.confidenceInterval;
console.log(`Diabetes Risk Assessment for Patient ${patientId}:`);
console.log(`Risk Score: ${riskScore} (Category: ${riskCategory})`);
console.log(`Confidence Interval: ${confidenceInterval.lower} - ${confidenceInterval.upper}`);
console.log('\nContributing Factors:');
response.contributingFactors.forEach(factor => {
console.log(`- ${factor.factor}: ${factor.value} (${factor.impact} impact, ${factor.direction} risk)`);
});
console.log('\nRecommendations:');
response.recommendations.forEach(rec => {
console.log(`- ${rec.description}`);
console.log(` Expected Impact: ${rec.expectedImpact}`);
});
// Generate a risk visualization
const riskVisualization = await ai.visualize({
data: response,
visualizationType: 'riskAssessment',
title: 'Type 2 Diabetes Risk Factors',
patientId: patientId
});
return {
riskAssessment: response,
visualization: riskVisualization
};
}
// Mock function to fetch patient data
async function fetchPatientData(patientId) {
// In a real application, this would fetch data from your database
return {
age: 45,
sex: 'male',
height: 175,
weight: 90,
conditions: ['hypertension', 'hyperlipidemia'],
medications: ['lisinopril', 'atorvastatin'],
allergies: ['penicillin'],
familyHistory: ['diabetes', 'coronary artery disease'],
vitals: [
{
date: '2023-02-15',
heartRate: 72,
bloodPressure: { systolic: 138, diastolic: 88 }
},
// More vitals data...
],
labResults: [
{
date: '2023-02-15',
test: 'fastingGlucose',
value: 110,
unit: 'mg/dL',
referenceRange: { low: 70, high: 99 }
},
{
date: '2023-02-15',
test: 'hba1c',
value: 5.9,
unit: '%',
referenceRange: { low: 4.0, high: 5.6 }
},
// More lab results...
]
};
}
// Call the function with a patient ID
assessDiabetesRisk('patient_12345')
.then(results => console.log('Assessment complete!'))
.catch(error => console.error('Error assessing diabetes risk:', error));Building a Health Coaching Application
This example demonstrates how to integrate the Healix AI Platform into a health coaching application.
// HealthCoachApp.jsx
import React, { useState, useEffect } from 'react';
import { HealixAI } from '@healix/ai-sdk';
import { HealthDataChart } from './components/HealthDataChart';
import { RecommendationCard } from './components/RecommendationCard';
import { ProgressTracker } from './components/ProgressTracker';
import { GoalSetting } from './components/GoalSetting';
// Initialize the Healix AI client
const ai = new HealixAI({
apiKey: process.env.REACT_APP_HEALIX_API_KEY
});
function HealthCoachApp({ userId }) {
const [loading, setLoading] = useState(true);
const [userData, setUserData] = useState(null);
const [insights, setInsights] = useState([]);
const [recommendations, setRecommendations] = useState([]);
const [goals, setGoals] = useState([]);
const [error, setError] = useState(null);
// Fetch user data and generate insights
useEffect(() => {
async function fetchUserDataAndInsights() {
try {
setLoading(true);
// Fetch user data from your backend
const userData = await fetchUserData(userId);
setUserData(userData);
// Generate insights using Healix AI
const analysisResponse = await ai.analyze({
data: {
sleepData: userData.sleepData,
activityData: userData.activityData,
nutritionData: userData.nutritionData,
vitalData: userData.vitalData
},
options: {
analysisType: 'comprehensive',
timeframe: '30d'
}
});
setInsights(analysisResponse.insights);
setRecommendations(analysisResponse.recommendations);
// Fetch user goals
const userGoals = await fetchUserGoals(userId);
setGoals(userGoals);
} catch (err) {
console.error('Error fetching data:', err);
setError('Failed to load your health data. Please try again later.');
} finally {
setLoading(false);
}
}
fetchUserDataAndInsights();
}, [userId]);
// Handle setting a new goal
const handleSetGoal = async (goalData) => {
try {
// Use AI to validate and refine the goal
const refinedGoal = await ai.refineGoal({
userId,
proposedGoal: goalData,
userData: {
currentMetrics: userData.latestMetrics,
healthHistory: userData.healthHistory
}
});
// Save the goal to your backend
await saveUserGoal(userId, refinedGoal);
// Update local state
setGoals(prevGoals => [...prevGoals, refinedGoal]);
return { success: true, goal: refinedGoal };
} catch (err) {
console.error('Error setting goal:', err);
return { success: false, error: err.message };
}
};
// Generate a personalized workout plan
const generateWorkoutPlan = async () => {
try {
const workoutPlan = await ai.generatePlan({
userId,
planType: 'workout',
userData: {
fitnessLevel: userData.fitnessLevel,
preferences: userData.preferences,
restrictions: userData.restrictions
},
goals: goals.filter(g => g.category === 'fitness')
});
return workoutPlan;
} catch (err) {
console.error('Error generating workout plan:', err);
return null;
}
};
if (loading) {
return <div className="loading-spinner">Loading your health data...</div>;
}
if (error) {
return <div className="error-message">{error}</div>;
}
return (
<div className="health-coach-app">
<header className="app-header">
<h1>Your Health Coach</h1>
<p>Personalized insights and recommendations based on your health data</p>
</header>
<section className="health-overview">
<h2>Health Overview</h2>
<div className="metrics-grid">
{userData.latestMetrics.map(metric => (
<div key={metric.id} className="metric-card">
<h3>{metric.name}</h3>
<div className="metric-value">{metric.value} {metric.unit}</div>
<div className="metric-trend">
{metric.trend === 'up' ? '↑' : metric.trend === 'down' ? '↓' : '→'}
{metric.trendValue}% in the last 7 days
</div>
</div>
))}
</div>
</section>
<section className="data-visualization">
<h2>Your Health Trends</h2>
<div className="charts-container">
<HealthDataChart
data={userData.sleepData}
type="sleep"
timeframe="30d"
/>
<HealthDataChart
data={userData.activityData}
type="activity"
timeframe="30d"
/>
</div>
</section>
<section className="ai-insights">
<h2>AI-Powered Insights</h2>
<div className="insights-list">
{insights.map(insight => (
<div key={insight.id} className="insight-card">
<div className="insight-category">{insight.category}</div>
<p className="insight-description">{insight.description}</p>
<div className="insight-confidence">
Confidence: {(insight.confidence * 100).toFixed(0)}%
</div>
</div>
))}
</div>
</section>
<section className="recommendations">
<h2>Personalized Recommendations</h2>
<div className="recommendations-list">
{recommendations.map(rec => (
<RecommendationCard
key={rec.id}
recommendation={rec}
onAccept={() => markRecommendationAsAccepted(rec.id)}
onDismiss={() => markRecommendationAsDismissed(rec.id)}
/>
))}
</div>
</section>
<section className="goal-tracking">
<h2>Your Health Goals</h2>
<GoalSetting onSetGoal={handleSetGoal} />
<ProgressTracker goals={goals} />
</section>
<section className="action-buttons">
<button
className="primary-button"
onClick={generateWorkoutPlan}
>
Generate Workout Plan
</button>
<button className="secondary-button">
Schedule Health Coaching Session
</button>
</section>
</div>
);
}
// Mock functions for data fetching - replace with your actual API calls
async function fetchUserData(userId) {
// In a real app, this would call your backend API
return {
sleepData: [],
activityData: [],
nutritionData: [],
vitalData: [],
latestMetrics: [
{ id: 1, name: 'Sleep Score', value: 85, unit: '/100', trend: 'up', trendValue: 5 },
{ id: 2, name: 'Resting Heart Rate', value: 62, unit: 'bpm', trend: 'down', trendValue: 3 },
{ id: 3, name: 'Daily Steps', value: 8750, unit: '', trend: 'up', trendValue: 12 },
{ id: 4, name: 'Active Minutes', value: 42, unit: 'min', trend: 'up', trendValue: 8 }
],
fitnessLevel: 'intermediate',
preferences: ['running', 'yoga', 'cycling'],
restrictions: ['knee pain'],
healthHistory: {}
};
}
async function fetchUserGoals(userId) {
// In a real app, this would call your backend API
return [
{ id: 1, category: 'fitness', description: 'Run a 5K in under 30 minutes', deadline: '2023-06-30', progress: 0.65 },
{ id: 2, category: 'sleep', description: 'Average 7.5 hours of sleep per night', deadline: '2023-04-30', progress: 0.8 }
];
}
async function saveUserGoal(userId, goal) {
// In a real app, this would call your backend API
console.log('Saving goal for user', userId, goal);
return { success: true };
}
async function markRecommendationAsAccepted(recId) {
// In a real app, this would call your backend API
console.log('Marking recommendation as accepted', recId);
return { success: true };
}
async function markRecommendationAsDismissed(recId) {
// In a real app, this would call your backend API
console.log('Marking recommendation as dismissed', recId);
return { success: true };
}
export default HealthCoachApp;Custom Model Training
While our pre-trained models cover a wide range of healthcare use cases, you can also train custom models on your specific data to achieve even higher accuracy and domain-specific insights.
Fine-Tuning Process
Our platform allows you to fine-tune our base models on your proprietary data, creating custom models that understand your specific healthcare context.
Data Preparation
Prepare and format your training data according to our guidelines, ensuring it's properly anonymized and structured.
Model Selection
Choose the base model that best fits your use case from our range of healthcare-specific foundation models.
Training Configuration
Configure training parameters, including learning rate, epochs, and validation split.
Training & Evaluation
Our platform handles the training process and provides detailed evaluation metrics to assess model performance.
Deployment
Deploy your custom model to production with a single click, making it available through our API.
Benefits of Custom Models
- Higher Accuracy
Custom models can achieve 15-30% higher accuracy on domain-specific tasks compared to general models.
- Specialized Terminology
Models learn your organization's specific medical terminology, abbreviations, and documentation patterns.
- Unique Insights
Discover patterns and insights specific to your patient population or clinical practice.
- Competitive Advantage
Create unique AI capabilities that differentiate your healthcare application in the market.
Custom Model Training API
/v1/models/trainStart a custom model training job with your data.
Example
import { HealixAI } from '@healix/ai-sdk';
const ai = new HealixAI({
apiKey: 'YOUR_API_KEY'
});
async function trainCustomModel() {
// Start a training job
const trainingJob = await ai.models.train({
baseModel: 'healix-health-analyzer-v2',
trainingData: {
datasetId: 'dataset_12345', // ID of a previously uploaded dataset
datasetFormat: 'jsonl'
},
hyperparameters: {
learningRate: 2e-5,
epochs: 3,
batchSize: 16,
validationSplit: 0.1
},
modelName: 'custom-health-analyzer-cardiology',
description: 'Specialized model for cardiology data analysis'
});
console.log(`Training job started: ${trainingJob.id}`);
console.log(`Status: ${trainingJob.status}`);
console.log(`Estimated completion time: ${trainingJob.estimatedCompletionTime}`);
// Poll for training status
let status = trainingJob.status;
while (status === 'in_progress') {
await new Promise(resolve => setTimeout(resolve, 60000)); // Wait 1 minute
const updatedJob = await ai.models.getTrainingJob(trainingJob.id);
status = updatedJob.status;
console.log(`Current status: ${status}`);
if (updatedJob.metrics) {
console.log('Current metrics:', updatedJob.metrics);
}
}
if (status === 'completed') {
console.log('Training completed successfully!');
console.log(`Model ID: ${trainingJob.modelId}`);
console.log('Final metrics:', trainingJob.metrics);
// Deploy the model
const deployment = await ai.models.deploy({
modelId: trainingJob.modelId,
deploymentName: 'production',
scalingConfig: {
minInstances: 1,
maxInstances: 5
}
});
console.log(`Model deployed: ${deployment.endpoint}`);
return deployment;
} else {
console.error(`Training failed: ${trainingJob.error}`);
return null;
}
}
trainCustomModel()
.then(deployment => {
if (deployment) {
console.log('Custom model training and deployment complete!');
}
})
.catch(error => console.error('Error in model training process:', error));Ready to Build with Healix AI?
Join leading healthcare organizations using Healix AI to build innovative applications that transform healthcare.